酷播亮新聞
最棒的知識補給站

算法是如何左右用戶決策的?

產品經理入行寶典,12週特訓,22名產品大牛全程帶班,200+名企內推,100%保障就業! 了解詳情

互聯網科技的恐怖之處不在“竊取”我們的隱私,而在於那些打著“給我更優質服務”旗號的所謂人工智能算法正在不斷侵蝕我們的心智,影響我們的決策。

最近兩天關於互聯網科技產品明目張膽或暗度陳倉的收集用戶隱私的文章在不斷的爆出。 不管是由於量變終於帶來了質變的用戶意志覺醒還是自媒體人無聊的自造熱點,不得不承認,近幾年互聯網產品在收集用戶信息方面愈演愈烈。 除了技術的進步帶來的收集能力提高以外,越來越被大量應用的人工智能推薦算法也是促使各互聯網產品費盡心機去收集用戶信息的重要推動力。

我們今天要講的,就是收集了用戶信息(不只隱私信息)後的推薦算法,它們或許正在悄悄的通過各種我們無法感知到的方式影響我們的決策。

從一個情感實驗說起

Facebook曾開展過一項為期一周的試驗,研究人員以68,9003 名Facebook用戶為試驗對象,每天向他們推送具有特定情緒傾向的內容。 有一些用戶看到的主要是積極和快樂的內容,而另一些用戶看到的主要是負面和悲哀的內容。

當實驗結束時,這些被當作“小白鼠”的不知情用戶的發帖行為已經發生了相應改變:每天看到積極內容的用戶更有可能發布積極的消息,而那些每天看到消極內容的用戶 更有可能發布消極的消息。

也就是說,Facebook可以操縱用戶的情緒。

或許你會認為,這項實驗中因為有了研究人員的人為乾擾,“算法”才會向用戶推薦了具有特定情緒的內容,我們當前所使用的各種資訊平台在沒有“研究人員”干預的 情況下,不會主動控制我們的情緒。 是的,我們的情緒確實沒有被控制,但我們的認知或許正在被潛移默化的改變。

你會擔心自己變LOW麼?

認知的改變是一家比情緒改變更危險的事情,情緒可以通過外界環境的改變快速調整恢復,而認知一旦被降低,就很難自動恢復到初始水平。

曾經有很長一段時間,我們使用的各種算法分發新聞APP被吐槽推薦內容過於低俗,開始各平台還會說這是孤立樣本,千人千面的算法會根據讀者的喜好精準推薦,看到 低俗內容不是平台造成的(潛台詞就是用戶自己低俗)。 隨著越來越多的人聯合起來發出同樣的質疑,平台不得不改口“會加入人工審核,提高內容質量”。

其實,推薦內容越來越低俗化恰恰是機器算法準確的表現,它發現了人性的弱點,找到了精準推薦的“竅門”:擦邊色情、低俗段子、標題黨確確實實更容易吸引到用戶 的眼球,這些實實在在的點擊量恰恰是對算法推薦的肯定,在沒有人為乾預的情況下,算法肯定會更加頻繁的推薦相似內容。

當你看了越來越多被算法推薦的低俗內容後,你的認知和欣賞水平肯定會受到影響。 我們不能說是機器算法錯了,因為它們確確實實響應了讀者的需求。

但是,最終受害的卻是讀者自己。

什麼催生了你的購買?

內容平台的出發點肯定不是為了讓用戶變得低俗,平台只是想要獲取用戶更多的時間,以實現它們最開始的目的——廣告。

媒體和廣告之間的合作由來已久,從紙媒到電台到電視到現在的互聯網,廣告一直是媒體最重要的營收來源。 只不過互聯網之前的媒體廣告對我們的購物決策並未造成太多的影響(除了重要媒體背書帶來的信任感),而今的互聯網廣告卻在越來越有效的影響我們的購物行為。

曾經在電視劇中間插播的廣告讓我們心生厭煩,但現在這些夾雜在feed流中的廣告卻受到很大一部分人的喜愛:因為它們剛好是你想要的。

喜愛之餘,你有沒有想過,它們是否真的是你想要的呢?

仔細想一想,廣告前後的內容有沒有恰好為你營造了購物氛圍? 你最近兩天有沒有恰好搜索過相關信息? 你是否昨天把它放進了購物車但是猶豫後沒有購買? 如果是,但為什麼昨天你還猶豫不決的購物行為,在今天讀完幾篇剛好相關的文章以後,你的購買欲大增呢?

算法在改變你的決策

去年6月份,我開始學習機器學習。 這是一個非常好玩的學科,它的核心是數學裡的概率統計。 機器學習其實就是給定機器大量經過人工分類篩選的數據,讓它分析學習其中的規律擬合得到某種函數,然後應用該函數去完成更多未經人工處理的數據分類工作。

推薦算法就是數據分類的一種應用。 機器對人類預先給出分類的數據進行學習,“掌握”其中的分類規則後給新添加的數據打上相應的分類標籤,比如內容平台裡的“軍事”“科技”或者“母嬰”等類別主題 。 對於算法內容分發平台,機器還有一項工作,就是對用戶進行分類打標籤,根據用戶在平台的信息資料和行為數據,給用戶打上和文章分類相似的標籤。

完成了對內容和用戶的分類後,機器就可以把具有相同標籤的內容和用戶放在一起,混合推薦。 分發的過程中,機器也會通過用戶的反饋(比如點贊、分享、不喜歡等操作)不斷地學習,內容越多,用戶反饋越豐富,推薦的準確度則越高。

所以你會發現,你在此類平台上閱讀的內容越多,你看到的信息就越符合你的口味。

按照這個推薦邏輯,如果內容質量有保證的話,理論上我們可以更高效的獲取信息,這是一件好事。 但前面我們說過,平台方的根本目的並不是服務大眾,他們的出發點是在佔有用戶足夠多時間的基礎上推送廣告,廣告肯定想要最大可能的促成交易。

僅靠用戶在平台上的行為數據很難對用戶的“購買慾望”有準確的了解,所以平台大都通過各種手段引入用戶的外部數據來豐富機器對你的認知,比如你的搜索網站的 搜索記錄、購物APP的瀏覽歷史,甚至你的輸入法輸入記錄:

結合這些“場外”信息,機器能給你打上更“精準”的標籤,然後推送更精準的廣告信息給你,從而提高促成交易的可能性。 這個促成交易的過程是通過大量周邊信息的堆砌影響你的心智判斷來完成,整個過程你並不知情,甚至樂在其中。

很多人會說既然享受了便利,付出一些總是應該的;也有人會說這種“未經許可”採集隱私的行為是有違道德倫理的。 我不想在這裡討論技術和倫理相關的問題,只想提醒大家:

當你在一款被算法控制的內容產品裡“遨遊”時,請一定要謹記,你的認知可能已經被改變,你此刻的慾望可能正在被算法左右。

 

作者:野蠻人諾基亞,公眾號:喜新(ID:noyanjiu)

本文由 @野蠻人諾基亞 原創發佈於人人都是產品經理。 未經許可,禁止轉載。

題圖來自 unsplash,基於 CC0 協議

如有侵權請來信告知:酷播亮新聞 » 算法是如何左右用戶決策的?